If it's not what You are looking for type in the equation solver your own equation and let us solve it.
85=4.9t^2
We move all terms to the left:
85-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+85=0
a = -4.9; b = 0; c = +85;
Δ = b2-4ac
Δ = 02-4·(-4.9)·85
Δ = 1666
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1666}=\sqrt{1*1666}=\sqrt{1}*\sqrt{1666}=1\sqrt{1666}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1\sqrt{1666}}{2*-4.9}=\frac{0-1\sqrt{1666}}{-9.8} =-\frac{1\sqrt{1666}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1\sqrt{1666}}{2*-4.9}=\frac{0+1\sqrt{1666}}{-9.8} =\frac{1\sqrt{1666}}{-9.8} $
| 2=x-2/3 | | 2(8x+5=22 | | x+4.1+0.7=-5.9 | | 42/7=48/x | | 1+8x+16x2=0 | | 6+a/8=-1 | | 155=45-v | | 3.405-2.10q=0.17q | | 130+20+b=180 | | -1+a/3=5 | | (Y-6)(y+1)=0 | | b+60+78=180 | | 2/9x=-1/8x+2/9 | | 202=156-y | | 2x+73+71=180 | | 212+48h=-1 | | 6a−7=5a+2/a= | | 6a−7=5a+2a= | | 4x+10+103+31=180 | | 114-w=294 | | 3/4x-3/4x=0 | | 4x+10+103+32=180 | | 8.94=4.29+3x | | 124-v=207 | | 8.94=4.29=3x | | 4x+1+103+32=180 | | _1/3(6x+8)=10 | | P(x)=(x^6)-(x^5)+(4x^2)-4x | | 11x-4+86+32=180 | | 10(b+3)=160 | | 10(x+3)-9-9x-4)=x-5+3 | | 1.5x-1.7+2.44x=0.46 |